# Stereocontrolled Homologation of 1,2:3,4-Di-*O*-isopropylidene-α-D-galactohexodialdo-1,5-pyranose to 7-Deoxynonodialdose Epimers *via* Thiazole-Aldehyde Synthesis<sup>†</sup>

Alessandro Dondoni,<sup>\*,</sup><sup>a</sup> Sandra lanelli,<sup>b</sup> Ladislav Kniezo,<sup>a</sup> Pedro Merino<sup>a</sup> and Mario Nardelli<sup>‡,b</sup>

<sup>a</sup> Dipartimento di Chimica, Laboratorio di Chimica Organica, Università degli Studi di Ferrara,
 Via L. Borsari 46, I-44100 Ferrara, Italy
 <sup>b</sup> Istituto di Chimica Generale, Università degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze 78, I-43100 Parma, Italy

The three-carbon chain elongation of the title dialdose has been carried out by two approaches employing thiazole-based reagents: (i) aldol condensation with the lithium enolate of 2-acetylthiazole; (ii) olefination with triphenyl(thiazol-2-ylcarbonylmethylene)phosphorane and 1,4-addition of benzyl oxide anion to the resultant vinyl ketone. The stereoselective reduction of the resultant (*R*) and (*S*)  $\beta$ -hydroxy ketones, followed by protection of the hydroxy groups as benzyl ethers, afforded four compounds consisting of the galactopyranosyl ring substituted at C-5 with stereoisomeric 1,3-bis(benzyloxy)propyl units bearing the thiazol-2-yl ring at the terminus of the chain. The unmasking of the formyl group from the thiazolyl ring to give 7-deoxynonodialdoses was carried out in two cases. The unequivocal assignment of the structures of two intermediates isolated in each route was established by X-ray room-temperature crystal-structure analyses.

Recent reports from one of our laboratories have demonstrated application of the thiazole-aldehyde synthesis in carbohydrate chemistry.<sup>1</sup> Based on this reaction, various methods have been developed for the chain elongation of sugar-derived aldehydes R-CHO (R = polyalkoxy chain) to give homologues bearing one, two, or three more carbon atoms. For example, 2-acetylthiazole (2-ATT, 1) and triphenyl(thiazol-2-ylcarbonylmethylene)phosphorane (2-TCMP, 2) have been used as threecarbon-atom units in synthetic routes to higher 3-deoxyaldos-2-uloses and 2-ulosonic acids such as KDO,<sup>2</sup> KDN,<sup>3</sup> and their epimers at C-4. The reagent 1 acts via aldol condensation of its lithium enolate as a direct equivalent to pyruvaldehyde (route A), whereas phosphorane 2 affords, via Wittig olefination, an  $\alpha,\beta$ -enone intermediate which then undergoes a Michael-type addition of an alkoxide anion (route B) (Scheme 1). These routes appeared to be complementary since they led to βhydroxy and  $\beta$ -alkoxy ketones with opposite configurations at C-β.

We now report application of routes A and B to 1,2:3,4-di-O-isopropylidene- $\alpha$ -D-galacto-hexodialdo-1,5-pyranose 3 and show the stereoselective reduction of the resultant ketones 4 and 5 into four galactose derivates 6 bearing stereoisomeric 1,3-dialkoxy-3-(thiazol-2-yl)propyl units at C-5 (Scheme 2). The synthetic equivalence of compounds 6 to 7-deoxynonodialdoses 7 is demonstrated by the aldehyde unmasking from the thiazole ring. The side-chain elongation of the dialdose 3 is of considerable importance<sup>4</sup> since it provides an entry to biologically active higher sugars incorporating the 1,5-galactopyranosyl moiety.<sup>5</sup>

## **Results and Discussion**

Homologation of the Dialdose 3.—Following route A, the generation of the lithium enolate of 2-ATT 1 in the presence of dialdose 3 at -50 °C in tetrahydrofuran (THF) using lithium



Scheme 2 (Th = thiazol-2-yl)

*tert*-butoxide, afforded exclusively the aldol (R)-4 (ds  $\ge 95\%$ )<sup>6</sup> which was isolated in 58% yield (Scheme 3). The R configuration at the newly formed stereocentre in this compound was established by X-ray crystallography of the 1,3-diol derived from it (see below). On the other hand, following route B, the dialdose 3 was initially treated with the phosphorane 2 in refluxing chloroform to give the vinyl ketone (E)-8 (85%) together with a small amount of the isomer (Z)-8 (not shown). The E configuration of the main olefin (E)-8 (coupling

<sup>†</sup> Thiazole-aldehyde synthesis: preparation of aldehydes from C-2substituted thiazoles by thiazole-into-formyl conversion.

<sup>&</sup>lt;sup>‡</sup> Author to whom inquiries regarding the X-ray structure analysis should be addressed.



Scheme 3 Reagents: i, 2-ATT (1), Bu'OLi; ii, DIBAL-H; iii, Me4 N BH(OAc)3; iv, 2-TCMP (2); v, BnONa

constant of vinylic protons, J = 15.8 Hz) was expected on the basis of the stabilized nature of the phosphorus ylide 2 and the reaction conditions employed.<sup>7</sup> The Michael-type 1,4addition of sodium benzyl oxide to (E)-8 in THF at  $-50 \,^{\circ}\text{C}$ was sufficiently diastereoselective to give rise to an 80:20 mixture of the epimers (S)-5 and (R)-5 which were individually isolated in 70 and 18% yield respectively. The X-ray structure determination of the major adduct (S)-5 demonstrated the S configuration at C-6 (see below). Hence the aldol condensation route A and the olefination-alkoxylation route B appeared quite efficient for the stereoselective installation of R  $\beta$ hydroxy- and S  $\beta$ -benzyloxypropanoyl moieties at C-5 of the galactopyranosyl ring starting from the dialdose 3. A single transition-state model (Fig. 1) accounts for the above stereoselective nucleophilic additions to both the aldehyde 3 and the olefin (E)-8. Accordingly, attack of the nucleophile should take place on the face opposite to the plane of the pyranose ring of the aldehyde or alkene conformer as shown in Fig. 1. This model is reminiscent of the Cram open-chain model wherein the C=X double bond is flanked by the two least bulky groups attached to the adjacent centre.<sup>8</sup> Stereoselectivity according to a non-chelate model (in the Cram-Felkin sense) had been exhibited by the dialdose 3 in reactions with other nucleophiles<sup>9</sup> and in cycloaddition with dienes.<sup>10</sup> On the other hand, the work on the internal asymmetric induction in Michael-type addition of heteronucleophiles to alkene sugars is much more scanty.<sup>3,11</sup>

The  $\beta$ -hydroxy-directed diastereofacial reduction of the carbonyl group of (R)-4 was then exploited to create a 1,3-diol unit with a new stereocentre in either configuration. The appropriate metal hydride reducing agent was easily chosen on the basis of previous work with this methodology.<sup>12</sup> Thus, the reduction of aldol (R)-4 with diisobutylaluminium hydride DIBAL-H and tetramethylammonium triacetoxyborohydride [Me<sub>4</sub>NBH(OAc)<sub>3</sub>] produced (ds  $\geq$  95% in both cases) syn-



and *anti*-1,3-diol epimers, respectively, which were isolated as the O-benzyl ethers (S,R)-6 (90%) and (R,R)-6 (96%). The structure of compound (R,R)-6 was established by X-ray crystallography (see below). The *anti* 1,3-diol unit in this compound was expected on the basis of a stereochemical model,<sup>12</sup> suggesting that the reduction of (R)-4 with the borohydride reducing agent<sup>13</sup> Me<sub>4</sub>NBH(OAc)<sub>3</sub> should occur *via* intramolecular-hydride delivery in the chair-like chelate structure A involving an oxygen-boron bond (Fig. 2). On the other hand the *syn*-selectivity for the reduction of aldol (R)-4 with DIBAL-H is consistent with an external hydride attack on the half-chair chelate structure B involving an oxygen-

aluminium bond.<sup>14</sup> It is worth mentioning that we have already exploited these hydroxy-directed stereocontrolled reductions of  $\beta$ -hydroxy ketones for the construction of 1,3-polyol chains.<sup>15</sup>

The  $\beta$ -benzyloxy group affected only rather weakly the asymmetric reduction of the carbonyl group of compound (S)-5. With either  $LiAlH_4$  or DIBAL-H in the presence of lithium iodide (THF at -78 °C), the reaction was moderately selective (ds 76-78% by <sup>1</sup>H NMR spectroscopy) and gave rise to a mixture of syn and anti alcohols which were isolated as the *O*-benzyl ethers (R,S)-6 (72%) and (S,S)-6 (20%). The assignment of the configuration to the major isomer (R,S)-6 was based on the assumption  $^{16}$  that the reduction of (S)-5 occurred with syn selectivity via an external hydride delivery on the less hindered face of the carbonyl conformer shown in Scheme 2. The stabilization of this conformer by  $\beta$ -chelation of the carbonyl and ether oxygens with lithium cation can be assumed. On the other hand, the reduction of (R)-5 under the above conditions was essentially unselective, giving rise to a mixture of alcohols in 55:45 ratio. After benzylation, the NMR spectrum of the mixture superimposed on that of a mixture of bis ethers (S,R)-6 and (R,R)-6. This correlation confirmed that the configuration of the newly formed stereocentre of the minor product obtained from the dialdose 3 via the Wittig-Michael route B is identical with that of the major product formed via the aldol condensation route A.

Having prepared four galactose derivatives bearing stereoisomeric thiazol-2-yl-1,3-dibenzyloxypropyl units at C-5, their equivalence to nonodialdoses was demonstrated by the formyl group unmasking of two of them. Thus, the application of the original one-pot thiazole-to-formyl deblocking protocol<sup>17</sup> to compounds (R,R)-6 and (R,S)-6 afforded the corresponding protected nonodialdoses (R,R)-7 and (R,S)-7 in good isolated yields (Scheme 4). It is worth pointing out that further chain



Scheme 4 Reagents and conditions: i, MeI, MeCN, reflux; then NaBH<sub>4</sub>, MeOH, 0 °C; then HgCl<sub>2</sub>, aq. MeCN, room temp.

elongation of these compounds is feasible by either process (A and B) or any other thiazole-based methodology.<sup>1</sup>

Crystal Structure of Ketone (S)-5 and Bis ether (R,R)-6. Fig. 3 shows the ORTEP<sup>18</sup> drawings of the two molecules studied by X-ray diffraction, and Table 1 compares the most relevant structural parameters of these compounds. As shown in Scheme 3, both C(6) and C(4) in the side-chain of bis ether (R,R)-6 have the R configuration, while the C(6) of (S)-5 has the S configuration. In both compounds the galactopyranosyl moiety shows the R configuration at C(7), C(11) and C(13) and S at C(8) and C(10) according to the chirality of the common precursor D-galactose used in the syntheses. The absolute configuration of these stereocentres is in agreement with the Flack's index values (see Experimental section and Table 2).

The  $C(3) \cdots C(7)$  carbon-atom chain is strictly planar in compound (R,R)-6, the maximum displacement from the least-squares plane being 0.010(5) Å for C(4). On the other hand, the same chain is deformed from planarity at the thiazole end in

compound (S)-5 as it appears that C(3) is 0.568(3) Å out of the least-squares plane through C(4), C(5), C(6) and C(7). This deformation is very likely to arise as a consequence of the  $\pi$ conjugation between the heterocyclic ring and the carbonyl, as indicated by the small value [4.2(4)°] of the S-C(3)-C(4)-O(1) torsion angle. A value as large as 57.8(7)° is observed in compound (*R*,*R*)-6 where conformational freedom exists about the C(3)-C(4) bond. In both cases the orientation of the thiazole ring places the sulfur on the same side of the carbonyl oxygen. The contact distance between these atoms is shorter when the ring is conjugated with the carbonyl [S · · ·O(1) is 2.964(2) in (S)-5 and 3.151(4) Å in (*R*,*R*)-6].

As expected, the thiazole ring is planar;  $\pi$ -conjugation with the carbonyl exerts some influence on the endocyclic bond distances not involving sulfur that become significantly longer, and on the exocyclic C(3)–C(4) bond that becomes shorter for compound (S)-5. Unfortunately, the degree of accuracy in the analysis of (R,R)-6 is much lower than that of (S)-5, so these differences cannot be discussed in more depth, although the observed trend is quite well defined.

The conformation of the pyranose ring is a twist with two local pseudo-two-fold axes, one running along the mid-points of the C(7)–O(6) and C(10)–C(11) bonds and the other along the C(8)  $\cdot \cdot \cdot$ C(19) direction. The puckering parameters <sup>19</sup> of the three rings of the sugar moiety, as set out in Table 3, are in acceptable good agreement for the two compounds.

All the benzyloxy substituents in both compounds show extended conformations with the  $C(ar)-CH_2$  bond antiperiplanar with respect to the O-C (side-chain) bond. The conformation about the C(6)-C(7) bond is such as to have the O(7)-C(6) bond of the O(7)-benzyloxy substituent, antiperiplanar to O(6)-C(7) in (R,R)-6 [O(6)-C(7)-C(6)-O(7) = 174.1(4)°], and synclinal [72.4(2)°] in (S)-5.

#### Experimental

 $\dot{M}$ .p.s were taken using a Büchi 510 apparatus and are uncorrected. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a 300 MHz Gemini 300 Varian spectrometer unless otherwise stated. Chemical shifts are given in parts per million downfield from SiMe<sub>4</sub> as internal standard. J Values are given in Hz. IR spectra were recorded on a Perkin-Elmer Model 297 grating spectrometer. Elemental analyses were performed on a Model 1106 microanalyser (Carlo Erba). Optical rotations were measured at ~20 °C using a Perkin-Elmer Model 214 polarimeter, and are given in units of 10<sup>-1</sup> deg cm<sup>2</sup> g<sup>-1</sup>. TLC was carried on glass slides precoated with silica gel (Merck Kieselgel 60 F254), and preparative chromatography on columns of silica gel (Merck 70–230 mesh). All experiments were carried out with freshly distilled and dried solvents.

6,7-Dideoxy-1,2:3,4-di-O-isopropylidene-8-(thiazol-2-yl)- $\alpha$ -Dgalacto-oct-6-enodialdo-1,5-pyranose (E)-8.—To a well stirred solution of 1,2:3,4-di-O-isopropylidene- $\alpha$ -D-galacto-hexodialdo-1,5-pyranose<sup>20</sup> 3 (2.48 g, 9.6 mmol) in CHCl<sub>3</sub> (100 cm<sup>3</sup>) was added triphenyl(thiazol-2-ylcarbonylmethylene)phosphorane<sup>1,3</sup> 2 (4 g, 10.3 mmol) and the reaction mixture was stirred for 24 h at 50 °C and then for an additional 60 h at room temperature. The solvent was evaporated off under reduced pressure and the residue was chromatographed (hexane-diethyl ether 4:1) to give the alkenes (Z)-8 and (E)-8.

*Z*-8: (0.2 g, 6%), oil (Found: C, 55.5; H, 5.7; N, 3.6.  $C_{17}H_{21}NO_6S$  requires C, 55.6; H, 5.8; N, 3.8%);  $[\alpha]_D - 129.7$ (*c* 1.18, CHCl<sub>3</sub>);  $\delta_H(300 \text{ MHz}; \text{CDCl}_3)$  1.32 (3 H, s), 1.34 (3 H, s), 1.49 (3 H, s) 1.57 (3 H, s), 4.37 (1 H, dd, *J* 2.4 and 5.1), 4.63 (1 H, dd, *J* 1.9 and 7.9), 4.70 (1 H, dd, *J* 2.4 and 7.9), 5.53 (1 H, ddd, *J*, 1.6, 1.9 and 7.1), 5.58 (1 H, d, *J* 5.1), 6.53 (1 H, dd, *J* 7.1 and 11.9), 7.49 (1 H, dd, *J* 1.6 and 11.9), 7.68 (1 H, d, *J* 3.0)



Fig. 3 ORTEP drawings of the molecules of compounds (a) (R,R)-6 and (b) (S)-5, showing the atom labelling assumed for the crystal structure analysis. Ellipsoids at 50% probability level.

and 8.02 (1 H, d, J 3.0);  $\delta_{\rm C}$ (75.5 MHz; CDCl<sub>3</sub>) 24.10, 24.78, 25.76, 25.82, 66.46, 70.24, 71.15, 73.17, 96.56, 109.11, 109.57, 122.32, 126.84, 145.27, 149.40, 168.82 and 182.96.

*E*-**8**: (3.0 g, 85%), m.p. 140–141 °C (Found: C, 55.5; H, 5.9; N, 4.0%);  $[\alpha]_{\rm D}$  – 119.0 (*c* 0.63, CHCl<sub>3</sub>);  $\delta_{\rm H}$ (300 MHz; CDCl<sub>3</sub>) 1.01 (3 H, s), 1.09 (3 H, s), 1.32 (3 H, s), 1.36 (3 H, s), 3.81 (1 H, dd, *J* 2.2 and 7.8), 4.13 (1 H, dd, *J* 2.4 and 4.9), 4.40 (1 H, dd, *J* 2.4 and 7.8), 4.54 (1 H, ddd, *J* 2.1, 2.2 and 3.9), 5.53 (1 H, d, *J* 4.9), 6.56 (1 H, d, *J* 3.0), 7.46 (1 H, d, *J* 3.0), 7.52 (1 H, dd, *J* 15.8 and 3.9) and 8.04 (1 H, dd, *J* 15.8 and 2.1);  $\delta_{\rm C}$ (75.5 MHz; CDCl<sub>3</sub>) 23.91, 24.17, 25.55, 25.61, 68.13, 70.68, 71.15, 72.78, 96.71, 108.37, 109.58, 125.30, 125.94, 144.71, 145.11, 168.83 and 181.70.

6-O-Benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-8-(thiazol-2-yl)-β-L-glycero-D-galacto-octodialdo-1,5-pyranose (S)-5 and α-D-glycero-epimer (R)-5.—To a well stirred suspension of NaH (0.38 g of a 60% dispersion in mineral oil, 9.5 mmol) in THF (15 cm<sup>3</sup>) at room temperature was added anhydrous benzyl alcohol (1.08 g, 10 mmol). The mixture was refluxed for 30 min, then was cooled to -50 °C and a solution of enone (E)-8 (0.95 g, 2.59 mmol) in THF (40 cm<sup>3</sup>) was added at such a rate that the temperature inside the flask remained constant at -50 °C. After being stirred for 8 h at -50 °C, the reaction mixture was partitioned between saturated aq. NH<sub>4</sub>Cl and diethyl ether. The organic layer was dried, and evaporated

Table 1 Comparison of selected bond distances (Å), bond angles (°) and torsion angles (°). Esds in parentheses

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>Compound               | ( <i>R</i> , <i>R</i> )-6 | (S) <b>-5</b>        | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( <i>R</i> , <i>R</i> )-6 | (S)- <b>5</b>        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-C(1)                     | 1.692(12)                 | 1.696(4)             | S-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.701(5)                  | 1.707(3)             |
| $\begin{array}{ccccc} \dot{C}(2) & 1.430(6) & 1.423(2) & O(2)-C(9) & 1.426(9) & 1.425(3) \\ O(3)-C(10) & 1.439(3) & 1.449(3) & O(3)-C(10) & 1.425(3) & 1.417(3) \\ O(4)-C(11) & 1.419(5) & 1.424(3) & O(4)-C(12) & 1.428(6) & 1.473(3) \\ O(5)-C(12) & 1.428(5) & 1.424(3) & O(6)-C(13) & 1.404(5) & 1.410(3) \\ O(6)-C(7) & 1.428(5) & 1.442(3) & O(6)-C(13) & 1.406(3) & 1.399(3) \\ O(7)-C(6) & 1.432(5) & 1.429(3) & O(7)-C(14) & 1.425(6) & 1.406(3) \\ N-C(2) & 1.234(13) & 1.330(4) & N-C(3) & 1.301(9) & 1.294(4) \\ C(1)-C(2) & 1.294(1) & 1.300(6) & C(3)-C(6) & 1.519(8) & 1.516(3) \\ C(4)-C(5) & 1.462(10) & 1.599(4) & C(3)-C(6) & 1.519(8) & 1.516(3) \\ C(4)-C(7) & 1.510(9) & 1.513(3) & C(7)-C(3) & 1.494(10) & 1.492(4) \\ C(3)-C(22) & 1.517(9) & 1.514(4) & C(10)-C(11) & 1.484(10) & 1.492(4) \\ C(1)-C(22) & 1.517(9) & 1.514(4) & C(10)-C(11) & 1.510(6) & 1.506(4) \\ C(12)-C(22) & 1.517(9) & 1.514(4) & C(10)-C(11) & 1.510(6) & 1.506(4) \\ C(12)-C(23) & 90.7(4) & 89.4(2) & C(4)-O(1)-C(25) & 112.4(4) \\ C(8)-O(2)-C(9) & 109.5(4) & 108.6(2) & C(9)-O(3)-C(10) & 108.2(3) & 106.5(2) \\ C(1)-O(4)-C(13) & 11.33(3) & 114.7(2) & C(6)-O(7)-C(10) & 108.2(3) & 106.5(2) \\ C(1)-O(4)-C(13) & 11.33(3) & 117.7(2) & C(12)-C(25) & 112.4(4) \\ C(8)-O(2)-C(9) & 109.5(4) & 108.6(2) & C(3)-C(4) & 114.6(4) & 115.2(2) \\ C(7)-O(6)-C(13) & 111.3(3) & 117.7(2) & C(3)-C(4) & 114.6(4) & 115.2(2) \\ C(7)-O(6)-C(13) & 111.3(6) & 110.1(3) & S-C(1)-C(2) & 108.8(7) & 110.4(3) \\ N-C(2)-C(4) & 125.7(6) & 124.3(2) & S-C(3)-C(4) & 113.4(6) & 115.2(2) \\ O(1)-C(4)-C(5) & 110.2(4) & 105.1(2) & C(3)-C(4)-C(5) & 114.4(6) & 115.2(2) \\ O(7)-C(6)-C(7) & 106.1(4) & 110.2(2) & O(6)-C(7)-C(8) & 109.3(4) & 109.9(2) \\ O(2)-C(9)-C(12) & 109.3(4) & 109.9(2) & C(7)-C(6) & 107.4(4) & 106.9(2) \\ O(2)-C(6)-C(7) & 106.1(4) & 102.2() & O(6)-C(7)-C(8) & 109.3(4) & 109.9(2) \\ O(2)-C(6)-C(7) & 106.4(4) & 100.2(2) & O(6)-C(7)-C(8) & 109.3(4) & 106.9(2) \\ O(2)-C(6)-C(7) & 104.4(4) & 104.3(2) & O(6)-C(7)-C(8) & 109.3(4) & 106.9(2) \\ O(2)-C(6)-C(7) & 104.4(4) & 106.3(2) & O(6)-C(7)-C(8) & 109.3(4) & 106.9(2) \\ O(2)-C(6)-C(7)$   | O(1)-C(4)                  | 1.386(6)                  | 1.211(3)             | O(1)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.457(11)                 |                      |
| $ \begin{array}{c} 0(3)-C(0) & 1.423(7) & 1.422(3) & 0(3)-C(10) & 1.423(5) & 1.417(3) \\ 0(4)-C(11) & 1.419(5) & 1.423(3) & 0(3)-C(10) & 1.423(5) & 1.410(3) \\ 0(5)-C(12) & 1.423(8) & 1.443(3) & 0(5)-C(13) & 1.404(5) & 1.410(3) \\ 0(5)-C(7) & 1.423(5) & 1.442(3) & 0(5)-C(13) & 1.404(5) & 1.490(3) \\ 0(7)-C(6) & 1.432(5) & 1.423(3) & 0(7)-C(14) & 1.433(6) & 1.496(3) \\ 0(7)-C(2) & 1.289(11) & 1.340(6) & C(3)-C(4) & 1.437(6) & 1.492(4) \\ C(4)-C(5) & 1.482(10) & 1.590(4) & C(3)-C(6) & 1.519(8) & 1.516(3) \\ C(6)-C(7) & 1.510(9) & 1.515(3) & C(7)-C(8) & 1.510(9) & 1.536(3) \\ C(6)-C(7) & 1.510(9) & 1.515(3) & C(7)-C(8) & 1.510(9) & 1.536(3) \\ C(7)-C(2) & 1.384(10) & 1.492(4) \\ C(9)-C(22) & 1.517(9) & 1.514(4) & C(10)-C(11) & 1.484(10) & 1.492(4) \\ C(12)-C(24) & 1.533(8) & 1.511(4) & C(12)-C(23) & 1.501(7) & 1.596(4) \\ C(12)-C(24) & 1.533(8) & 1.511(4) & C(14)-C(15) & 1.528(7) & 1.491(4) \\ C(1)-C(3) & 1.533(8) & 1.511(4) & C(14)-C(15) & 1.528(7) & 1.491(4) \\ C(1)-C(4)-C(13) & 113.2(3) & 114.7(2) & C(6)-O(7)-C(14) & 114.6(4) & 115.2(2) \\ C(7)-O(6)-C(13) & 113.2(6) & 110.86(2) & C(7)-O(3)-C(13) & 110.0(3) & 110.8(2) \\ C(1)-O(4)-C(3) & 111.2(6) & 110.1(3) & S-C(1)-C(2) & 108.8(7) & 110.4(3) \\ N-C(2)-C(1) & 117.6(10) & 115.1(3) & S-C(1)-C(2) & 108.8(7) & 110.4(3) \\ N-C(2)-C(4) & 125.7(6) & 124.3(2) & S-C(3)-C(4) & 111.6(4) & 114.9(2) \\ O(7)-C(6)-C(3) & 111.0(4) & 119.6(2) & C(3)-C(6) & 117.3(5) & 112.2(2) \\ O(7)-C(6)-C(3) & 110.2(4) & 105.1(2) & C(3)-C(6) & 117.3(5) & 112.2(2) \\ O(7)-C(6)-C(3) & 110.2(4) & 105.1(2) & C(3)-C(6) & 117.3(5) & 112.2(2) \\ O(7)-C(6)-C(7) & 106.1(4) & 104.3(2) & O(3)-C(7)-C(6) & 107.4(4) & 106.9(2) \\ O(7)-C(6)-C(3) & 110.2(4) & 105.1(2) & O(3)-C(6) & 107.4(4) & 106.9(2) \\ O(7)-C(6)-C(3) & 110.2(4) & 105.1(2) & O(3)-C(6) & 107.4(4) & 106.9(2) \\ O(7)-C(6)-C(3) & 100.2(4) & 103.3(2) & O(3)-C(7)-C(6) & 107.4(4) & 106.9(2) \\ O(7)-C(6)-C(7) & 106.4(1) & 103.3(2) & O(3)-C(7)-C(6) & 107.4(4) & 106.9(2) \\ O(7)-C(6)-C(3) & 100.2(4) & 108.8(2) & O(3)-C(7)-C(6) & 107.4(4) & 106.9(2) \\ O(7)-C(6)-C(3) & 100.2(4) & 108.8(2) &$      | O(2) - C(8)                | 1.430(6)                  | 1.423(3)             | O(2)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.426(9)                  | 1.425(3)             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O(3)-C(9)                  | 1.424(7)                  | 1.422(3)             | O(3) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.423(5)                  | 1.417(3)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(4) - C(11)               | 1.419(5)                  | 1.424(3)             | O(4) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.426(6)                  | 1.428(3)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(5) - C(12)               | 1 423(8)                  | 1.438(3)             | O(5) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,404(5)                  | 1.410(3)             |
| $\begin{array}{ccccc} 0(7)-C(6) & 1.432(5) & 1.429(5) & 0(7)-C(14) & 1.428(6) & 1.406(5) \\ N-C(2) & 1.343(13) & 1.380(4) & N-C(3) & 1.301(9) & 1.294(4) \\ C(1)-C(2) & 1.289(11) & 1.340(6) & C(3)-C(4) & 1.457(10) & 1.463(4) \\ C(4)-C(5) & 1.482(10) & 1.590(4) & C(3)-C(6) & 1.519(8) & 1.516(3) \\ C(6)-C(7) & 1.510(9) & 1.51(3) & C(7)-C(8) & 1.501(9) & 1.524(3) \\ C(8)-C(10) & 1.542(9) & 1.534(3) & C(9)-C(2) & 1.484(10) & 1.492(4) \\ C(1)-C(13) & 1.532(9) & 1.523(3) & C(12)-C(23) & 1.501(7) & 1.506(4) \\ C(12)-C(24) & 1.533(8) & 1.511(4) & C(14)-C(15) & 1.528(7) & 1.491(4) \\ C(1)-C(13) & 1.532(8) & 1.511(4) & C(4)-C(15) & 1.528(7) & 1.491(4) \\ C(1)-C(-C(2) & 106.9(3) & 107.2(2) & C(12)-C(23) & 1.100(3) & 110.8(2) \\ C(1)-C(-C(1) & 115.33(8) & 114.7(2) & C(6)-O(7)-C(14) & 114.6(4) & 115.2(2) \\ C(2)-N-C(3) & 111.2(6) & 110.1(3) & S-C(1)-C(2) & 108.8(7) & 110.0(3) \\ N-C(2)-C(1) & 117.6(10) & 115.1(3) & S-C(3)-C(4) & 111.6(4) & 114.9(2) \\ N-C(3)-C(4) & 125.7(6) & 122.4(2) & C(3)-C(4) & 111.6(4) & 114.9(2) \\ N-C(2)-C(1) & 117.6(10) & 115.1(3) & S-C(3)-C(4) & 114.6(6) & 117.8(2) \\ O(1)-C(4)-C(3) & 111.0(4) & 119.6(2) & C(3)-C(4)-C(5) & 114.4(66) & 117.8(2) \\ O(1)-C(4)-C(3) & 110.2(4) & 105.1(2) & C(3)-C(4)-C(5) & 113.3(5) & 112.4(2) \\ O(7)-C(6)-C(7) & 106.1(4) & 110.2(2) & O(6-C(7)-C(6) & 107.4(4) & 106.9(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 109.0(2) & C(7)-C(8) & 109.3(4) & 109.0(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 100.0(2) & C(7)-C(8) & 109.3(4) & 109.0(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 110.7(2) & O(3)-C(7)-C(8) & 103.1(5) & 112.4(2) \\ O(3)-C(9)-C(22) & 107.2(5) & 109.1(2) & O(3)-C(7)-C(8) & 103.1(3) & 104.4(2) \\ O(3)-C(9)-C(22) & 107.2(5) & 109.1(2) & O(3)-C(7)-C(8) & 103.1(3) & 104.4(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 110.7(2) & O(3)-C(7)-C(8) & 103.1(3) & 109.4(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 100.4(2) & C(7)-C(8) & 103.1(3) & 109.4(4) & 109.2(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 100.3(2) & O(3)-C(7)-C(8) & 103.1(3) & 104.4(2) \\ O(3)-C(9)-C(22) & 107.2(5) & 109.3(2) & O(3)-C(1)-C(1) & 113.3(3) & 112.4(2) \\ O(3)-C(9)-C(22) & 107.2(5) & 109.3(2) & $       | O(6) - C(7)                | 1 428(5)                  | 1 442(3)             | O(6) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.403(7)                  | 1.399(3)             |
| $\begin{array}{ccccc} N(1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & $                                  | O(7) - C(6)                | 1.432(5)                  | 1 429(3)             | O(7) - C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.428(6)                  | 1.406(3)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N(2)                       | 1.432(3)<br>1.343(13)     | 1 380(4)             | $N_{-C}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 301(9)                  | 1 294(4)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1) $(2)$                  | 1.3+3(13)<br>1.280(11)    | 1.340(6)             | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.367(10)                 | 1 463(4)             |
| $\begin{array}{c} C(47-C(3) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.501(9) & 1.5$                                  | C(1) = C(2)<br>C(4) = C(5) | 1.209(11)<br>1.482(10)    | 1.540(0)             | C(5) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 519(8)                  | 1.516(3)             |
| $\begin{array}{c} C(b)-C(1) & 1.210(2) & 1.213(3) & C(1)-C(10) & 1.213(3) \\ C(1)-C(10) & 1.542(2) & 1.534(3) & C(1)-C(21) & 1.544(1) & 1.422(4) \\ C(2)-C(22) & 1.517(9) & 1.514(4) & C(10)-C(21) & 1.510(6) & 1.504(3) \\ C(11)-C(13) & 1.522(9) & 1.529(3) & C(12)-C(23) & 1.501(7) & 1.506(4) \\ C(12)-C(24) & 1.533(8) & 1.511(4) & C(14)-C(15) & 1.528(7) & 1.491(4) \\ \hline \\ C(1)-S-C(3) & 90.7(4) & 89.4(2) & C(4)-O(1)-C(25) & 112.4(4) \\ C(8)-O(2)-C(9) & 109.5(4) & 108.6(2) & C(9)-O(3)-C(10) & 108.2(3) & 106.5(2) \\ C(11)-O(4)-C(12) & 106.9(3) & 107.2(2) & C(12)-O(5)-C(13) & 110.0(3) & 110.8(2) \\ C(7)-O(6)-C(13) & 113.3(3) & 114.7(2) & C(6)-O(7)-C(14) & 114.6(4) & 115.2(2) \\ C(2)-N-C(3) & 111.2(6) & 115.1(3) & S-C(1)-C(2) & 108.8(7) & 110.0(3) \\ N-C(2)-C(1) & 117.6(10) & 115.1(3) & S-C(3)-N & 111.6(4) & 114.9(2) \\ N-C(3)-C(4) & 126.7(6) & 115.4(3) & S-C(3)-C(4) & 127.7(5) & 120.7(2) \\ O(1)-C(4)-C(3) & 111.0(4) & 119.6(2) & C(3)-C(4)-C(5) & 114.6(6) & 117.8(2) \\ O(1)-C(4)-C(5) & 105.9(4) & 122.6(2) & C(4)-C(5)-C(6) & 115.2(5) & 112.2(2) \\ O(7)-C(6)-C(7) & 106.1(4) & 110.2(2) & O(6)-C(7)-C(8) & 109.3(4) & 109.0(2) \\ O(2)-C(8)-C(7) & 106.1(4) & 110.2(2) & O(6)-C(7)-C(8) & 109.3(4) & 109.0(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 100.9(2) & C(7)-C(8)-C(10) & 113.9(5) & 112.4(2) \\ O(7)-C(6)-C(7) & 109.3(4) & 100.9(2) & C(7)-C(8)-C(10) & 113.9(5) & 112.9(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 100.7(2) & O(3)-C(9)-C(21) & 110.2(5) & 108.7(2) \\ O(2)-C(9)-C(22) & 109.3(4) & 110.7(2) & O(3)-C(9)-C(21) & 110.2(5) & 108.7(2) \\ O(2)-C(9)-C(22) & 109.3(4) & 110.7(2) & O(3)-C(9)-C(21) & 110.2(5) & 108.7(2) \\ O(2)-C(9)-C(22) & 109.3(4) & 110.7(2) & O(3)-C(9)-C(21) & 110.2(5) & 108.7(2) \\ O(2)-C(9)-C(22) & 109.3(4) & 100.7(2) & O(3)-C(10)-C(11) & 108.5(3) & 110.3(2) \\ O(4)-C(1)-C(10) & 106.7(3) & 107.5(2) & C(1)-C(10) & 106.5(3) & 110.3(2) \\ O(4)-C(1)-C(10) & 106.7(3) & 107.5(2) & C(1)-C(10) & 106.5(3) & 110.3(2) \\ O(4)-C(1)-C(10) & 106.7(3) & 107.5(2) & C(6)-C(7) & -179.4(5) & 177.4(2) \\ C(3)-C(1)-C(4)-C(3) & 67.2(7) & C(4)-C(5)-C(6)-C(7) & -179.4(5) & 177.4(2) \\ C($ | C(4) - C(3)                | 1.462(10)                 | 1.505(4)             | C(3) - C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.517(0)                  | 1.576(3)             |
| $\begin{array}{c} C(9) = C(10) & 1.342.97 & 1.334.97 & C(9) = C(27) & 1.404.07 & 1.402.07 \\ C(1) = C(12) & 1.534.97 & 1.534.97 & 1.504.97 & 1.504.97 \\ C(11) = C(12) & 1.532.69 & 1.522.97 & 1.201.07 & 1.506.61 & 1.506.41 \\ C(12) = C(24) & 1.533.08 & 1.511.04 & C(14) = C(15) & 1.528.07 & 1.491.04 \\ C(8) = O(2) = C(9) & 109.5.04 & 108.6.02 & C(9) = O(3) = C(10) & 108.2.03 & 106.5.02 \\ C(1) = O(4) = C(12) & 106.9.03 & 107.2.02 & C(12) = O(5) = C(13) & 110.0.03 & 110.8.02 \\ C(7) = O(6) = C(13) & 113.3.03 & 114.7.02 & C(6) = O(7) = C(14) & 114.6.04 & 115.2.02 \\ C(2) = N = C(3) & 111.2.06 & 110.101 & S = C(1) = C(2) & 108.8.07 & 110.6.03 & 110.8.02 \\ C(2) = N = C(3) & 111.2.06 & 110.101 & S = C(1) = C(2) & 108.8.07 & 110.4.03 \\ N = C(2) = C(1) & 117.6.010 & 115.1.03 & S = C(3) = N & 111.6.04 & 114.9.02 \\ N = C(3) = C(4) & 126.7.06 & 124.3.02 & S = C(3) = C(4) & 121.7.05 & 120.7.02 \\ O(1) = C(4) = C(5) & 105.9.04 & 122.6.02 & C(4) = C(5) = C(6) & 115.2.05 & 112.2.02 \\ O(7) = C(6) = C(7) & 106.1.04 & 110.2.02 & C(6) = C(7) = C(6) & 115.2.05 & 112.2.02 \\ O(7) = C(6) = C(7) & 106.1.04 & 110.2.02 & O(6) = C(7) = C(6) & 115.2.05 & 112.4.02 \\ O(7) = C(6) = C(7) & 109.3.04 & 109.0.02 & C(7) = C(8) = C(10) & 113.9.05 & 112.9.02 \\ O(2) = C(8) = C(10) & 104.2.04 & 104.3.22 & O(2) = C(7) = C(8) & 103.1.05 & 104.8.02 \\ O(3) = C(9) = C(22) & 107.2.05 & 109.1.(2) & O(3) = C(9) = C(21) & 110.2.05 & 110.2.02 \\ O(2) = C(3) = C(10) & 104.2.04 & 104.3.22 & O(6) = C(7) = C(8) & 103.3.1.05 & 104.8.02 \\ O(3) = C(9) = C(22) & 107.2.05 & 109.1.02 & O(3) = C(10) = C(13) & 113.8.05 & 112.9.02 \\ O(2) = C(3) = C(10) & 104.2.04 & 104.3.02 & O(7) = C(8) = C(10) & 113.9.05 & 112.9.02 \\ O(2) = C(3) = C(10) & 104.2.04 & 104.3.02 & O(7) = C(3) & 100.3.1.05 & 104.8.02 \\ O(3) = C(9) = C(22) & 107.2.05 & 109.1.02 & O(3) = C(10) = C(11) & 104.8.05 & 109.3.02 \\ O(4) = C(11) = C(13) & 105.3.02 & O(4) = C(2) = C(23) & 110.9.04 & 110.3.02 \\ O(4) = C(11) = C(14) & 106.7.03 & 107.5.02 & C(10) = C(11) & 1104.4.05 & 114.4.02 \\ O(5) = C(13) = C(11) & 104.3.04 & 106.9.02 & O(5$          | C(0) - C(1)                | 1.510(9)                  | 1.515(3)<br>1.524(3) | C(0) C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.301(3)<br>1.484(10)     | 1.520(5)             |
| $\begin{array}{c} C(9)=C(22) & 1.31(49) & 1.31(49) & C(10)=C(11) & 1.30(6) & 1.30(6) \\ C(11)=C(13) & 1.522(9) & 1.529(3) & C(12)=C(23) & 1.50(17) & 1.506(4) \\ C(12)=C(24) & 1.533(8) & 1.511(4) & C(14)=C(15) & 1.528(7) & 1.491(4) \\ \hline\\ C(1)=S-C(3) & 90.7(4) & 89.4(2) & C(4)=O(1)=C(25) & 112.4(4) \\ C(8)=O(2)=C(9) & 109.5(4) & 108.6(2) & C(9)=O(3)=C(10) & 108.2(3) & 106.5(2) \\ C(11)=O(4)=C(12) & 106.9(3) & 107.2(2) & C(12)=O(5)=C(13) & 110.0(3) & 110.8(2) \\ C(2)=N-C(3) & 111.2(6) & 115.1(3) & S-C(1)=C(2) & 108.8(7) & 110.4(3) \\ N-C(2)=C(1) & 117.6(10) & 115.1(3) & S-C(3)=N & 111.6(4) & 114.9(2) \\ N-C(3)=C(4) & 126.7(6) & 124.3(2) & S-C(3)=C(4) & 121.7(5) & 120.7(2) \\ O(1)=C(4)=C(3) & 111.0(4) & 119.6(2) & C(3)=C(4)=C(5) & 114.6(6) & 117.8(2) \\ O(7)=C(6)=C(7) & 100.2(4) & 105.1(2) & C(5)=C(6)=C(7) & 113.3(5) & 112.4(2) \\ O(7)=C(6)=C(7) & 100.2(4) & 105.1(2) & C(5)=C(6)=C(7) & 113.3(5) & 112.4(2) \\ O(7)=C(6)=C(7) & 100.3(4) & 109.0(2) & C(7)=C(6) & 107.4(4) & 106.9(2) \\ C(6)=C(7)=C(8) & 114.4(5) & 114.2(2) & O(6)=C(7)=C(6) & 107.4(4) & 106.9(2) \\ C(6)=C(7)=C(8) & 114.4(5) & 114.2(2) & O(6)=C(7)=C(6) & 107.4(4) & 106.9(2) \\ O(2)=C(8)=C(7) & 100.3(4) & 109.0(2) & C(7)=C(8) & C(10) & 113.3(5) & 112.4(2) \\ O(7)=C(6)=C(7) & 100.3(4) & 109.0(2) & C(7)=C(8) & C(10) & 113.3(5) & 112.4(2) \\ O(7)=C(2) & 109.3(4) & 110.7(2) & O(3)=C(10)=C(11) & 113.4(5) & 114.8(2) \\ O(2)=C(9)=C(2) & 109.3(4) & 110.7(2) & O(3)=C(10)=C(11) & 113.9(5) & 112.9(2) \\ O(2)=C(9)=C(2) & 109.3(4) & 110.7(2) & O(3)=C(10)=C(11) & 110.2(5) & 108.7(2) \\ C(2)=C(9)=C(22) & 109.3(4) & 110.7(2) & O(3)=C(10)=C(11) & 108.5(3) & 109.3(2) \\ O(4)=C(11)=C(110) & 106.7(3) & 107.5(2) & C(10)=C(12) & 110.2(5) & 108.7(2) \\ O(4)=C(12)=C(24) & 110.5(4) & 108.5(2) & O(4)=C(12)=C(23) & 110.9(4) & 110.3(2) \\ O(4)=C(12)=C(24) & 110.5(4) & 108.5(2) & O(4)=C(12)=C(23) & 110.9(4) & 110.3(2) \\ O(4)=C(12)=C(24) & 110.5(4) & 108.5(2) & O(4)=C(12)=C(23) & 110.9(4) & 110.3(2) \\ O(4)=C(12)=C(24) & 110.5(4) & 108.5(2) & O(4)=C(12)=C(23) & 110.9(4) & 111.3(2) \\ O(4)=C(12)=C(24) & 110.5(4) & 108.5(2)$  | C(0) = C(10)               | 1.542(9)                  | 1.554(5)             | C(10) C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.510(6)                  | 1.472(4)             |
| $\begin{array}{cccccc} C(1)=C_1(3) & 1.52(2) & 1.52(3) & C(12)=C(23) & 1.50(1) & 1.50(4) \\ C(1)=C_1(3) & 1.53(8) & 1.51(4) & C(14)=C(15) & 1.52(7) & 1.491(4) \\ \hline C(1)=C_1(3) & 105,5(4) & 108,6(2) & C(9)=O(3)=C(10) & 108,2(3) & 106,5(2) \\ C(1)=O(4)=C(12) & 106,9(3) & 107,2(2) & C(12)=O(5)=C(13) & 110,0(3) & 110,8(2) \\ C(2)=O(4)=C(13) & 113,3(3) & 114,7(2) & C(6)=O(7)=C(14) & 114,6(4) & 115,2(2) \\ C(2)=N=C(3) & 111,2(6) & 110,1(3) & S=C(1)=C(2) & 108,8(7) & 110,4(3) \\ N=C(2)=C(1) & 117,6(10) & 115,1(3) & S=C(1)=C(2) & 108,8(7) & 110,4(3) \\ N=C(3)=C(4) & 126,7(6) & 124,3(2) & S=C(3)=C(4) & 121,7(5) & 120,7(2) \\ O(1)=C(4)=C(3) & 111,0(4) & 119,6(2) & C(3)=C(4) & 115,1(5) & 112,2(2) \\ O(1)=C(4)=C(3) & 110,2(4) & 102,2(2) & C(5)=C(6) & 115,2(5) & 112,2(2) \\ O(7)=C(6)=C(7) & 106,1(4) & 110,2(2) & O(6)=C(7)=C(6) & 107,4(4) & 106,9(2) \\ O(2)=C(8)=C(7) & 109,3(4) & 109,0(2) & C(7)=C(8) & 109,3(4) & 109,0(2) \\ O(2)=C(8)=C(7) & 109,3(4) & 109,0(2) & C(7)=C(8) & 103,3(4) & 109,0(2) \\ O(2)=C(8)=C(10) & 104,2(4) & 104,3(2) & O(2)=C(21) & 110,2(5) & 110,2(2) \\ O(2)=C(2)=C(2) & 109,3(4) & 110,7(2) & O(3)=C(21) & 112,0(5) & 110,2(2) \\ O(2)=C(9)=C(22) & 109,3(4) & 100,2(2) & O(2)=C(21) & 110,2(5) & 108,7(2) \\ O(2)=C(2)=C(2) & 114,3(7) & 113,1(2) & O(3)=C(10)=C(11) & 108,5(3) & 109,3(2) \\ O(4)=C(11)=C(13) & 104,3(4) & 103,3(2) & O(4)=C(12)=C(23) & 100,9(4) & 110,3(2) \\ O(4)=C(11)=C(13) & 104,3(4) & 103,3(2) & O(4)=C(12)=C(23) & 110,9(4) & 110,3(2) \\ O(4)=C(11)=C(13) & 104,3(4) & 103,3(2) & O(4)=C(12)=C(23) & 110,9(4) & 110,3(2) \\ O(4)=C(12)=C(24) & 110,5(4) & 108,8(2) & C(10)=C(11) & 114,4(5) & 114,4(2) \\ O(5)=C(12)=C(24) & 110,5(4) & 108,8(2) & C(10)=C(11) & 114,4(5) & 114,4(2) \\ O(5)=C(12)=C(24) & 110,5(4) & 108,8(2) & C(13)=C(10) & 110,3(3) & 111,3(2) \\ O(7)=C(14)=C(15) & 106,2(4) & 108,8(2) & C(13)=C(10) & 110,3(3) & 111,3(2) \\ O(7)=C(14)=C(15) & 106,2(4) & 108,8(2) & C(13)=C(10) & 114,4(5) & 114,4(2) \\ O(7)=C(14)=C(15) & 106,2(4) & 108,8(2) & C(13)=C(10) & 110,3(3) & 111,3(2) \\ O(7)=C(14)=C(15) & 106,2(4) & 108,8(2) & C(13)=C(10) & 110,$   | C(9) = C(22)               | 1.517(9)                  | 1.514(4)             | C(10) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.510(0)                  | 1.504(5)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(11)+C(13)                | 1.522(9)                  | 1.529(5)             | C(12) = C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.501(7)                  | 1.300(4)             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(12)-C(24)                | 1.533(8)                  | 1.511(4)             | C(14) - C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.528(7)                  | 1.491(4)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(1)-S-C(3)                | 90.7(4)                   | 89.4(2)              | C(4)-O(1)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.4(4)                  |                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(8) - O(2) - C(9)         | 109.5(4)                  | 108.6(2)             | C(9) - O(3) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108.2(3)                  | 106.5(2)             |
| $\begin{array}{c} C(1) - O(1) - C(12) & 113.3(3) & 114.7(2) & C(6) - O(7) - C(14) & 114.6(4) & 115.2(2) \\ C(2) - N - C(3) & 111.2(6) & 110.1(3) & S - C(1) - C(2) & 108.8(7) & 110.4(3) \\ N - C(3) - C(4) & 126.7(6) & 124.3(2) & S - C(3) - N & 111.6(4) & 114.9(2) \\ N - C(3) - C(4) & 126.7(6) & 124.3(2) & S - C(3) - C(4) & 121.7(5) & 120.7(2) \\ O(1) - C(4) - C(3) & 111.0(4) & 119.6(2) & C(3) - C(4) - C(5) & 114.6(6) & 117.8(2) \\ O(1) - C(4) - C(5) & 105.9(4) & 122.6(2) & C(4) - C(5) & 114.6(6) & 117.8(2) \\ O(1) - C(4) - C(5) & 105.9(4) & 122.6(2) & C(4) - C(5) - C(6) & 115.2(5) & 112.2(2) \\ O(7) - C(6) - C(5) & 110.2(4) & 105.1(2) & C(5) - C(6) & 107.4(4) & 106.9(2) \\ C(6) - C(7) - C(8) & 114.4(5) & 114.2(2) & O(6) - C(7) - C(6) & 107.4(4) & 106.9(2) \\ C(6) - C(7) - C(8) & 114.4(5) & 114.2(2) & O(6) - C(7) - C(6) & 107.4(4) & 106.9(2) \\ O(2) - C(8) - C(7) & 109.3(4) & 109.0(2) & C(7) - C(8) - C(10) & 113.9(5) & 112.9(2) \\ O(2) - C(8) - C(7) & 109.3(4) & 109.0(2) & C(7) - C(8) - C(10) & 113.9(5) & 112.9(2) \\ O(2) - C(8) - C(7) & 109.3(4) & 109.0(2) & C(7) - C(8) - C(10) & 113.9(5) & 112.9(2) \\ O(2) - C(8) - C(7) & 109.3(4) & 110.7(2) & O(3) - C(9) - C(21) & 112.0(5) & 110.2(2) \\ O(2) - C(9) - C(22) & 107.2(5) & 109.1(2) & O(2) - C(9) - O(21) & 112.0(5) & 110.2(2) \\ O(2) - C(9) - C(22) & 107.2(5) & 109.1(2) & O(3) - C(10) - C(11) & 110.3(5) & 104.8(2) \\ C(8) - C(10) - C(11) & 114.2(4) & 115.1(2) & O(3) - C(10) - C(11) & 108.5(3) & 109.3(2) \\ O(4) - C(11) - C(13) & 104.3(4) & 103.3(2) & O(4) - C(12) - C(23) & 110.9(4) & 110.3(2) \\ O(4) - C(11) - C(13) & 104.3(4) & 103.3(2) & O(4) - C(12) - C(23) & 110.9(4) & 110.3(2) \\ O(4) - C(11) - C(13) & 104.3(4) & 103.3(2) & O(4) - C(13) & 115.8(4) & 114.4(2) \\ O(4) - C(11) - C(13) & 104.3(4) & 103.3(2) & O(4) - C(13) & 115.8(4) & 114.2(2) \\ O(4) - C(1) - C(13) & 104.3(4) & 103.3(2) & O(4) - C(13) & 115.8(4) & 114.2(2) \\ O(4) - C(1) - C(14) & 105.4(4) & 108.5(2) & O(4) - C(13) - C(13) & 115.8(4) & 114.2(2) \\ O(4) - C(1) - C(13) & 114.4(4) & 104.2(2) & O(5) - C(13) - C(11) & 114.4(5) & 114.6$           | C(1) = O(4) = C(12)        | 106.9(3)                  | 107.2(2)             | C(12) - O(5) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.0(3)                  | 110.8(2)             |
| $\begin{array}{c} C(2) = N-C(3) & 111.2(6) & 110.1(3) & S-C(1)-C(2) & 108.8(7) & 110.4(3) \\ N-C(2)-C(1) & 117.6(10) & 115.1(3) & S-C(3)-N & 111.6(4) & 114.9(2) \\ N-C(3)-C(4) & 126.7(6) & 124.3(2) & S-C(3)-N & 111.6(4) & 114.9(2) \\ O(1)-C(4)-C(3) & 111.0(4) & 119.6(2) & C(3)-C(4) & 121.7(5) & 120.7(2) \\ O(1)-C(4)-C(5) & 105.9(4) & 122.6(2) & C(4)-C(5) & 114.6(6) & 117.8(2) \\ O(1)-C(4)-C(5) & 110.2(4) & 105.1(2) & C(5)-C(6) & 115.2(5) & 112.4(2) \\ O(7)-C(6)-C(7) & 106.1(4) & 110.2(2) & O(6)-C(7)-C(6) & 107.4(4) & 106.9(2) \\ C(6)-C(7)-C(8) & 114.4(5) & 114.2(2) & O(6)-C(7)-C(8) & 109.3(4) & 109.0(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 109.0(2) & C(7)-C(8) & 109.3(4) & 109.0(2) \\ O(2)-C(8)-C(7) & 109.3(4) & 109.0(2) & C(7)-C(8) & 103.1(5) & 104.8(2) \\ O(3)-C(9)-C(22) & 109.3(4) & 110.7(2) & O(3)-C(9)-C(21) & 110.2(5) & 110.2(2) \\ O(2)-C(9)-C(22) & 107.2(5) & 109.1(2) & O(2)-C(9)-C(21) & 110.2(5) & 110.2(2) \\ O(2)-C(9)-C(22) & 114.3(7) & 113.1(2) & O(3)-C(10)-C(11) & 108.5(3) & 109.3(2) \\ O(4)-C(11)-C(10) & 106.7(3) & 107.5(2) & C(10)-C(11) & 108.5(3) & 109.3(2) \\ O(4)-C(11)-C(13) & 104.3(4) & 103.3(2) & O(4)-C(12)-C(23) & 110.9(4) & 110.3(2) \\ O(4)-C(11)-C(13) & 104.3(4) & 103.3(2) & O(4)-C(12)-C(23) & 109.6(4) & 111.3(2) \\ O(2)-C(2)-C(24) & 110.5(4) & 108.9(2) & O(5)-C(13)-C(11) & 114.4(5) & 114.6(2) \\ O(5)-C(12)-C(24) & 110.5(4) & 108.8(2) & C(10)-C(11) & 113.8(4) & 114.2(2) \\ O(4)-C(11)-C(13) & 104.8(4) & 104.0(2) & O(5)-C(13)-C(13) & 115.8(4) & 114.2(2) \\ O(5)-C(13)-O(5) & 75.1(5) & 79.5(2) & C(5)-C(6)-C(7) & -179.4(5) & 177.4(2) \\ C(7)-O(6)-C(13)-O(5) & 75.1(5) & 79.5(2) & C(5)-C(6)-C(7) & -179.4(5) & 177.4(2) \\ C(13)-O(6)-C(13)-O(5) & 75.1(5) & 79.5(2) & C(5)-C(6)-C(7) & -179.4(5) & 177.4(2) \\ C(7)-O(6)-C(13)-O(5) & 75.1(5) & 79.5(2) & C(5)-C(6)-C(7) & -179.4(5) & 177.4(2) \\ C(14)-C(15)-C(16) & 121.6(6) & 119.1(3) \\ \end{array}$                                                                                                                                                                                                                    | C(7) - O(6) - C(13)        | 113 3(3)                  | 1147(2)              | C(6) - O(7) - C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114.6(4)                  | 115.2(2)             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(2) - N - C(3)            | 111 2(6)                  | 110 1(3)             | S = C(1) = C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.8(7)                  | 110.4(3)             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $N_{-C}(2)_{-C}(1)$        | 117.6(10)                 | 115 1(3)             | S - C(3) - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 6(4)                  | 114.9(2)             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $N_{-C(2)} - C(1)$         | 126 7(6)                  | 124 3(2)             | S - C(3) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121 7(5)                  | 120.7(2)             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O(1)-C(4)-C(3)             | 111 0(4)                  | 119 6(2)             | C(3) - C(4) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114 6(6)                  | 117.8(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(1) - C(4) - C(5)         | 105 9(4)                  | 122 6(2)             | C(4) - C(5) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115 2(5)                  | 117.0(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(1) - C(4) - C(5)         | 105.9(4)<br>110.2(4)      | 105 1(2)             | C(5) - C(6) - C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113 3(5)                  | 112.2(2)<br>112.4(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(7) - C(6) - C(7)         | 106 1(4)                  | 100.1(2)<br>110 2(2) | O(6) - C(7) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107 4(4)                  | 106 9(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(6) = C(7) = C(8)         | 114 4(5)                  | 110.2(2)<br>114 2(2) | O(6) - C(7) - C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109 3(4)                  | 100.9(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(0) = C(7) = C(7)         | 100 3(4)                  | 1000(2)              | C(7) - C(8) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113 9(5)                  | 112 9(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(2) = C(8) = C(10)        | 107.3(+)                  | 109.0(2)<br>104.2(2) | O(2) C(0) O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103 1(5)                  | 104.8(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(2) = O(0) = O(10)        | 104.2(4)<br>100.2(4)      | 104.3(2)             | O(2) = O(3) = O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112.0(5)                  | 110.2(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(3) = O(3) = O(22)        | 107.3(4)                  | 100.7(2)             | O(3) = | 112.0(5)                  | 10.2(2)              |
| $\begin{array}{cccccc} C(2)-C(2)-C(2) & 114.3(7) & 115.1(2) & 0(3)-C(10)-C(6) & 105.1(4) & 104.3(2) \\ C(8)-C(10)-C(11) & 114.2(4) & 115.1(2) & 0(3)-C(10)-C(11) & 108.5(3) & 109.3(2) \\ O(4)-C(11)-C(10) & 106.7(3) & 107.5(2) & C(10)-C(11) & 118.8(4) & 114.2(2) \\ O(4)-C(11)-C(13) & 104.3(4) & 103.3(2) & 0(4)-C(12)-O(5) & 104.9(5) & 104.2(2) \\ O(5)-C(12)-C(24) & 109.0(4) & 108.9(2) & 0(5)-C(12)-C(23) & 110.9(4) & 110.3(2) \\ O(4)-C(12)-C(24) & 110.5(4) & 108.5(2) & 0(4)-C(12)-C(23) & 109.6(4) & 111.3(2) \\ C(23)-C(12)-C(24) & 111.8(4) & 113.2(2) & 0(6)-C(13)-C(11) & 114.4(5) & 114.6(2) \\ O(5)-C(13)-C(11) & 104.8(4) & 104.0(2) & 0(5)-C(13)-O(6) & 110.5(3) & 111.3(2) \\ O(7)-C(14)-C(15) & 106.2(4) & 108.8(2) & C(14)-C(15)-C(20) & 120.3(7) & 121.9(3) \\ C(14)-C(15)-C(16) & 121.6(6) & 119.1(3) & & & & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(2) = O(9) = O(22)        | 107.2(3)                  | 109.1(2)             | O(2) = O(3) = O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2(3)                   | 100.7(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(21) + C(9) + C(22)       | 114.3(7)                  | 115.1(2)             | O(3) = C(10) = C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.1(4)                  | 104.3(2)<br>100.2(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(8) + C(10) + C(11)       | 114.2(4)                  | 115.1(2)             | C(10) = C(11) = C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106.3(3)                  | 109.3(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(4) = C(11) = C(10)       | 100.7(3)                  | 107.5(2)             | C(10+C(11+C(13)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113.0(4)                  | 114.2(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(4) = O(11) = O(13)       | 104.3(4)                  | 103.3(2)             | O(4) = O(12) = O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.9(5)                  | 104.2(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(5)-C(12)-C(24)           | 109.0(4)                  | 108.9(2)             | O(5)+C(12)+C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.9(4)                  | 110.3(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(4) - C(12) - C(24)       | 110.5(4)                  | 108.5(2)             | O(4) - C(12) - C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.6(4)                  | 111.3(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(23)-C(12)-C(24)          | 111.8(4)                  | 113.2(2)             | O(6)-C(13)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114.4(5)                  | 114.6(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(5)-C(13)-C(11)           | 104.8(4)                  | 104.0(2)             | O(5)-C(13)-O(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.5(3)                  | 111.3(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(7)-C(14)-C(15)           | 106.2(4)                  | 108.8(2)             | C(14)-C(15)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.3(7)                  | 121.9(3)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(14)-C(15)-C(16)          | 121.6(6)                  | 119.1(3)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(25)-O(1)-C(4)-C(3)       | 67.2(7)                   |                      | C(4)-C(5)-C(6)-C(7) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 179.4(5)                | 177.4(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(7)-O(6)-C(13)-O(5)       | 75.1(5)                   | 79.5(2)              | C(5)-C(6)-C(7)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 174.5(4)                  | -49.8(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(13)-O(6)-C(7)-C(6) -     | -165.2(4) -               | -168.1(2)            | C(6)-C(7)-C(8)-O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -44.9(6)                  | -43.5(2)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(14)-O(7)-C(6)-C(5) -     | -147.2(5)                 | 147.0(2)             | O(3)-C(10)-C(11)-O(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 165.7(4)                  | 169.9(2)             |
| C(3)-C(4)-C(5)-C(6) - 179.1(5) 153.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-C(3)-C(4)-C(5)           | -62.2(7) -                | - 177.2(2)           | C(8)-C(10)-C(11)-O(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -80.0(5)                  | -72.9(2)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(3)-C(4)-C(5)-C(6) -      | -179.1(5)                 | 153.1(2)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                      |

under reduced pressure. Chromatography (silica gel; hexanediethyl ether 4:1) afforded the  $\beta$ -hydroxy ketones (R)-5 and (S)-5.

(*R*)-5: (0.086 g, 18%), oil (Found: C, 60.7; H, 6.3; N, 3.1.  $C_{24}H_{29}NO_7S$  requires C, 60.6; H, 6.15; N, 2.95%);  $[\alpha]_D$  -27.9 (*c* 0.38, CHCl<sub>3</sub>);  $\delta_H(300 \text{ MHz}; C_6D_6)$  1.28 (3 H, s), 1.35 (3 H, s), 1.45 (3 H, s) 1.52 (3 H, s), 3.47 (1 H, dd, *J* 7.8 and 17.0), 3.64 (1 H, dd, *J* 3.7 and 17.0), 3.82 (1 H, dd, *J* 1.7 and 9.0), 4.26 (1 H, dd, *J* 2.4 and 5.0), 4.41 (1 H, ddd, *J* 3.7, 7.8 and 9.0), 4.45 (1 H, dd, *J* 1.7 and 8.0), 4.59 (1 H, dd, *J* 2.4 and 8.0), 4.66 (1 H, d, *J* 10.9), 4.67 (1 H, d, *J* 10.9), 5.48 (1 H, d, *J* 5.0), 7.18–7.28 (5 H, m), 7.63 (1 H, d, *J* 3.2) and 7.98 (1 H, d, *J* 3.2);  $\delta_C$ (75.5 MHz; C<sub>6</sub>D<sub>6</sub>) 24.18, 24.70, 25.79, 25.85, 41.42, 69.13, 70.48, 70.84, 70.95, 73.55, 74.30, 96.56, 108.82, 109.28, 126.22, 127.84, 128.36, 128.54, 138.91, 145.07, 168.19 and 193.07

(S)-5: (0.86 g, 70%), m.p. 120–121 °C (Found: C, 60.4; H, 6.4; N, 2.9%);  $[\alpha]_{D} = 87.5$  (c 0.72, CHCl<sub>3</sub>);  $\delta_{H}(300 \text{ MHz}; C_{6}D_{6})$  1.32 (3 H, s), 1.36 (3 H, s), 1.48 (3 H, s), 1.54 (3 H, s), 3.47 (1 H, dd, J 3.4 and 16.8), 3.70 (1 H, dd, J 9.3 and 16.8), 4.06 (1 H, dd, J 1.8 and 7.4), 4.34 (1 H, dd, J 2.4 and 5.1), 4.38 (1 H, dd, J 1.8

and 8.0), 4.44 (1 H, ddd, J 3.4, 7.4 and 9.3), 4.63 (1 H, dd, J 2.4 and 8.0), 4.69 (1 H, d, J 11), 4.89 (1 H, d, J 11), 5.62 (1 H, d, J 5.1), 7.18–7.43 (5 H, m), 7.66 (1 H, d, J 3.2) and 7.99 (1 H, d, J 3.2);  $\delta_C$  (75.5 MHz; C<sub>6</sub>D<sub>6</sub>) 24.12, 24.76, 25.74, 25.81, 40.23, 69.24, 70.57, 70.93, 71.15, 73.97, 75.67, 96.58, 108.86, 109.63, 126.22, 127.56, 128.30, 128.36, 139.37, 145.01, 168.10 and 192.38.

(6S,8S)-6,8-Di-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-8-(thiazol-2-yl)-D-threo- $\alpha$ -D-galacto-octopyranose (S,S)-6 and Epimer (R,S)-6.—A well stirred solution of compound (S)-5 (0.2 g, 0.42 mmol) and LiI (0.064 g, 0.46 mmol) in anhydrous diethyl ether (15 cm<sup>3</sup>) was cooled to -78 °C and DIBAL-H (1 cm<sup>3</sup> of a 1.5 mol dm<sup>-3</sup> solution in toluene, 1.5 mmol) was added. After the mixture had been stirred for 1 h at -78 °C, ethyl acetate (2 cm<sup>3</sup>) was added and the reaction mixture was partitioned between saturated aq. sodium hydrogen carbonate and diethyl ether. The organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure. The residue (0.2 g) was shown by <sup>1</sup>H

Table 2 Experimental data for the X-ray analyses

| Compound                                                              | ( <i>R</i> , <i>R</i> )-6                         | (S) <b>-5</b>                                     |
|-----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Formula                                                               | C <sub>31</sub> H <sub>37</sub> NO <sub>7</sub> S | C <sub>24</sub> H <sub>29</sub> NO <sub>7</sub> S |
| Μ                                                                     | 566.7                                             | 475.6                                             |
| Space group                                                           | P3121                                             | P212121                                           |
| a/Å                                                                   | 10.310(5)                                         | 22.453(3)                                         |
| b/Å                                                                   | 10.310(5)                                         | 12.151(1)                                         |
| c/Å                                                                   | 52.101(10)                                        | 9.220(1)                                          |
| $V/Å^3$                                                               | 4796(3)                                           | 2515.5(5)                                         |
| Z                                                                     | 6                                                 | 4                                                 |
| $D_{\rm x}/{ m Mg}{ m m}^{-3}$                                        | 1.177                                             | 1.256                                             |
| Reflections for lattice parameters: number                            | 27                                                | 30                                                |
| $\theta$ range/°                                                      | 13/27                                             | 20/38                                             |
| F(000)                                                                | 1806                                              | 1008                                              |
| T/K                                                                   | 292(2)                                            | 292(2)                                            |
| Crystal size/mm                                                       | $0.13 \times 0.37 \times 0.77$                    | $0.34 \times 0.39 \times 0.44$                    |
| $\mu/\mathrm{mm}^{-1}$                                                | 1.223                                             | 1.502                                             |
| Scan speed/deg min <sup>-1</sup>                                      | 3–12                                              | 3-12                                              |
| Scan width/°                                                          | $1.2 + 0.35 \tan \theta$                          | $1.2 \pm 0.35 \tan \theta$                        |
| $\theta$ -range for intensity collection/°                            | 4.9/70.1                                          | 3.9/70.2                                          |
| h-range                                                               | 10/12                                             | -27/27                                            |
| k-range                                                               | -12/0                                             | 0/14                                              |
| l-range                                                               | -63/10                                            | -7/11                                             |
| Standard reflection                                                   | -3233                                             | 235                                               |
| Intensity variation                                                   | none                                              | none                                              |
| No. of measured reflections                                           | 9745                                              | 5307                                              |
| No. of unique reflections                                             | 6102                                              | 4783                                              |
| R(int)                                                                | 0.0573                                            | 0.0141                                            |
| No. of reflections used in the refinement $(N)$                       | 6074                                              | 4778                                              |
| No. of reflections omitted ( $\Delta/\sigma > 5$ )                    | 28                                                | 5                                                 |
| No. of reflections with $I > 2\sigma(I)$                              | 2074                                              | 3040                                              |
| No. of refined parameters (P)                                         | 329                                               | 307                                               |
| Extinction parameter (SHELXL), $b q$                                  | 0.0065(8)                                         | 0.0066(2)                                         |
| Max. LS shift to esd ratio                                            | -0.044                                            | -0.001                                            |
| Min/max height in final $\Delta \rho$ map e Å <sup>-3</sup>           | -0.17/0.26                                        | -0.13/0.14                                        |
| $wR2' = \sum w(\Delta F^2)^2 / \sum w(F_2)^2 / \frac{1}{2}$           | 0.1424                                            | 0.0790                                            |
| wR2 for all data                                                      | 0.2336                                            | 0.0892                                            |
| $S2 = [\Sigma w (\Delta F^2)^2 / (N - P)]^{1/2}$                      | 1.104                                             | 0.977                                             |
| $R1 = \Sigma  \Delta F  / \Sigma  F_{c}   \text{for } I > 2\sigma(I)$ | 0.0621                                            | 0.0364                                            |
| R1 for all data                                                       | 0.1779                                            | 0.0671                                            |
| Flack x parameter                                                     | 0.00(5)                                           | -0.02(2)                                          |
| $g(w = 1/[\sigma^2(F_0^2) + (gP)^2]$ where $P = (F_0^2 + 2F_0^2)/3$   | 0.0871                                            | 0.0363                                            |
|                                                                       |                                                   |                                                   |

<sup>*a*</sup> Refinement on  $F^2$  for all reflections except those flagged for possible systematic errors. The observed threshold  $I > 2\sigma(I)$  is used only for calculating R(obs), *etc.* given here for comparison with refinements on F. <sup>*b*</sup>  $F_c^* = kF_c[1 + 0.001 F_c^2 \lambda^3 / \sin(2\theta)]^{-1/4}$ .

 Table 3
 Puckering parameters for the sugar moieties

|                                           | ( <i>R</i> , <i>R</i> )-6 | (S) <b>-5</b>       |  |
|-------------------------------------------|---------------------------|---------------------|--|
| Ring O(6), C(7), C(8), C(10), C(11), C(3) |                           |                     |  |
| <i>q</i> <sub>2</sub>                     | 0.607(4) Å                | 0.625(2) Å          |  |
| <i>q</i> <sub>3</sub>                     | -0.132(4) Å               | 0.101(2) Å          |  |
| $\widetilde{Q}_{\mathrm{T}}$              | 0.622(4) Å                | 0.633(2) Å          |  |
| φ                                         | -149.0(4)°                | -145.8(2)°          |  |
| ė                                         | 102.3(4)°                 | 99.2(2)°            |  |
| conformation                              | half chair                | half chair          |  |
| Ring C(9), O(2), C(8), C(10), O(3)        |                           |                     |  |
| q                                         | 0.306(5) Å                | 0.305(2) Å          |  |
| φ                                         | 161.8(9)°                 | $-163.2(4)^{\circ}$ |  |
| conformation                              | half chair                | half chair          |  |
| Ring C(12), O(4), C(11), C(13), O(5)      |                           |                     |  |
| a                                         | 0.282(4) Å                | 0.300(2) Å          |  |
| ů<br>Ú                                    | 29.4(8)°                  | 9.0(4)°             |  |
| conformation                              | envelope-half chair       | half chair-envelope |  |

NMR spectroscopy to be a mixture of two diastereoisomers in a 78:22 ratio. This material was dissolved in dimethylformamide (6 cm<sup>3</sup>), cooled to 0 °C and NaH (50 mg of a 60% dispersion in mineral oil, 1.25 mmol) was added. After 20 min at 0 °C the (stirred) reaction mixture was treated with benzyl bromide (0.09 g, 0.53 mmol) and was stirred at room temperature for

another 12 h. The reaction mixture was poured into water  $(30 \text{ cm}^3)$  and extracted with diethyl ether. The organic layer was dried over sodium sulfate, and evaporated under reduced pressure. Chromatography (silica gel; hexane-diethyl ether 7:3) afforded *compounds* (S,S)-6 and (R,S)-6.

(S,S)-6: (0.048 g, 20%), oil (Found: C, 65.2; H, 6.6; N, 2.6.

 $C_{31}H_{37}NO_7S$  requires C, 65.5; H, 6.7; N, 2.6%);  $[\alpha]_D - 36.4$  $(c 0.45, CHCl_3); \delta_H(300 \text{ MHz}; C_6D_6) 1.28 (3 \text{ H}, \text{s}), 1.31 (3 \text{ H}, \text{s}),$ 1.45 (3 H, s), 1.50 (3 H, s), 2.05 (1 H, ddd, J 2.8, 10.9 and 14.1), 2.28 (1 H, ddd, J 2.7, 10.3 and 14.1), 3.87 (1 H, dd, J 1.8 and 7.6), 4.08 (1 H, ddd, J 2.7, 7.6 and 10.9), 4.21 (1 H, dd, J 1.8 and 7.9), 4.28 (1 H, dd, J 2.4 and 5.0), 4.29 (1 H, d, J 11.4), 4.39 (1 H, d, J 11.1), 4.53 (1 H, dd, J2.4 and 7.9), 4.55 (1 H, d, J11.4), 4.91 (1 H, d, J11.1), 5.08 (1 H, dd, J2.8 and 10.3), 5.59 (1 H, d, J 5.0), 7.19-7.37 (1 H, m) and 7.73 (1 H, d, J 3.2);  $\delta_{\rm C}$ (75.5 MHz; C<sub>6</sub>D<sub>6</sub>) 24.16, 24.76, 25.76, 25.81, 38.53, 70.60, 70.89, 71.14, 71.49, 72.07, 73.38, 75.06, 75.71, 96.62, 108.80, 109.57, 119.32, 127.56, 127.95, 128.19, 128.31, 128.47, 128.61, 138.36, 139.64, 142.88 and 174.66. (R,S)-6: (0.172 g, 72%), oil (Found: C, 65.6; H, 6.6; N, 2.5%);  $[\alpha]_{D}$  -38.8 (c 0.85, CHCl<sub>3</sub>);  $\delta_{H}(300$  MHz; C<sub>6</sub>D<sub>6</sub>) 1.30 (3 H, s), 1.34 (3 H, s), 1.37 (3 H, s), 1.50 (3 H, s), 2.35 (2 H, m), 3.69 (1 H, m), 4.00 (1 H, dd, J 1.9 and 7.6), 4.30 (1 H, dd, J 2.4 and 5.0), 4.34 (1 H, d, J 11.0), 4.38 (1 H, dd, J 1.9 and 8.0), 4.53 (2 H, s), 4.57 (1 H, dd, J 2.4 and 8.0), 4.58 (1 H, d, J 11.0), 5.19 (1 H, dd, J 6.9 and 7.2), 5.59 (1 H, d, J 5.0), 7.23-7.48 (11 H, m) and 7.80 (1 H, d, J 3.2);  $\delta_{\rm c}$  (75.5 MHz; C<sub>6</sub>D<sub>6</sub>) 24.17, 24.72, 25.66, 25.80, 38.50, 65.76, 70.50, 70.88, 71.17, 71.60, 71.96, 73.44, 76.12, 96.50, 108.71, 109.31, 119.59, 127.53, 127.94, 128.21, 128.32, 128.42, 128.63, 138.13, 139.62, 142.68 and 174.00.

6,8-Di-O-benzyl-1,2:3,4-di-O-isopropylidene-β-L-erythro-Dgalacto-nonodialdo-1,5-pyranose (R,S)-7.-A solution of the thiazole derivative (R,S)-6 (0.15 g, 0.26 mmol) in freshly distilled acetonitrile (5 cm<sup>3</sup>) was treated with methyl iodide (2.2 g, 15.5 mmol) and the reaction mixture was refluxed under nitrogen for 24 h. The solvent was evaporated under reduced pressure, and the residue was dissolved in methanol (10 cm<sup>3</sup>) and treated with NaBH<sub>4</sub> (50 mg, 1.3 mmol). After the mixture had been stirred for 15 min at room temperature it was evaporated under reduced pressure and the residue was partitioned between CH<sub>2</sub>Cl<sub>2</sub> and saturated aq. sodium hydrogen carbonate. The organic layer was separated, dried over sodium sulfate, and the solvent was distilled under reduced pressure. The residue was dissolved in acetonitrile  $(2 \text{ cm}^3)$  and then treated with a solution of HgCl<sub>2</sub> (90 mg, 0.33 mmol) in a 4:1 mixture of acetonitrile-water (3 cm<sup>3</sup>). After being stirred for 15 min at room temperature the mixture was distilled to dryness under reduced pressure, the residue was treated with aq. potassium iodide (10 cm<sup>3</sup>), and the mixture was extracted with chloroform  $(3 \times 10 \text{ cm}^3)$ . The organic layers were combined, dried over sodium sulfate, and evaporated under reduced pressure. Chromatography (silica gel; hexane-diethyl ether 3:2) yielded the aldehyde (R,S)-7 (0.11 g, 82%) as an oil (Found: C, 67.9; H, 7.2. C<sub>29</sub>H<sub>36</sub>O<sub>8</sub> requires C, 68.2; H, 7.1%); [α]<sub>D</sub> - 51.6  $(c 0.79, CHCl_3); \delta_H(300 \text{ MHz}; CDCl_3) 1.24 (3 \text{ H}, \text{s}), 1.26 (3 \text{ H}, \text{s}),$ 1.37 (3 H, s), 1.42 (3 H, s), 1.94–2.05 (1 H, m), 2.18–2.29 (1 H, m), 3.81-3.95 (3 H, m), 4.19-4.26 (2 H, m), 4.45 (1 H, d, J10.8), 4.51 (1 H, m), 4.57 (2 H, m), 4.79 (1 H, d, J 10.8), 5.51 (1 H, d, J 5.1), 7.14–7.35 (10 H, m) and 9.45 (1 H, d, J 0.9);  $\delta_{\rm C}$ (75.5 MHz; CDCl<sub>3</sub>) 24.23, 24.71, 25.76, 25.84, 32.04, 70.47, 70.87, 71.30, 71.84, 72.12, 73.40, 74.82, 80.32, 96.48, 108.82, 109.50, 127.66, 127.90, 128.19, 128.46, 128.69, 128.76, 138.68, 139.19 and 203.05.

#### 7-Deoxy-1,2:3,4-di-O-isopropylidene-8-(thiazol-2-yl)-α-D-

glycero-D-galacto-octodialdo-1,5-pyranose (R)-4.—To a well stirred solution of tert-butyl alcohol (0.74 g, 10 mmol) in anhydrous THF (15 cm<sup>3</sup>) was added, drop by drop, butyllithium (10.24 mmol, 6.4 cm<sup>3</sup> of a 1.6 mol dm<sup>-3</sup> solution in hexane) at room temperature. The mixture was stirred for 30 min, before being cooled to -50 °C, and a solution of 1,2:3,4di-O-isopropylidene- $\alpha$ -D-galacto-hexodialdo-1,5-pyranose<sup>20</sup> 3 (2.58 g, 10 mmol) and 2-acetylthiazole 1 (1.3 g, 10.24 mmol) in anhydrous THF (40 cm<sup>3</sup>) was added drop by drop. After 2 h at -50 °C, the mixture was treated with saturated aq. NH<sub>4</sub>Cl (40 cm<sup>3</sup>), stirred for 10 min, and then allowed to warm to room temperature. Water (20 cm<sup>3</sup>) was added, and the two liquid layers were separated. The aqueous layer was extracted with diethyl ether  $(4 \times 25 \text{ cm}^3)$ . The combined organic layers were dried over sodium sulfate, and the solvent was evaporated under reduced pressure. Chromatography (silica gel; hexane-diethyl ether 1:1) yielded the aldol adduct (R)-4 (2.23 g, 58%, ds > 95%) as an oil (Found: C, 52.9; H, 6.2; N, 3.9.  $C_{17}H_{23}$ -NO<sub>7</sub>S requires C, 53.0; H, 6.0; N, 3.6%);  $[\alpha]_D - 60.5$  (c 0.39, CHCl<sub>3</sub>); δ<sub>H</sub>(300 MHz; CDCl<sub>3</sub>) 1.27 (3 H, s), 1.35 (3 H, s), 1.44 (3 H, s), 1.49 (3 H, s), 3.35 (1 H, dd, J 8.7 and 17.4), 3.55 (1 H, d, J 5.6), 3.62 (1 H, dd, J 2.7 and 17.4), 3.73 (1 H, dd, J 1.9 and 8.7), 4.30 (1 H, dd, J 2.4 and 5.1), 4.40 (1 H, dddd, J 2.7, 5.2, 8.7 and 8.7), 4.51 (1 H, dd, J 1.9 and 8.0), 4.63 (1 H, dd, J 2.4 and 8.0), 5.51 (1 H, d, J 5.1), 7.69 (1 H, d, J 3.2) and 8.01 (1 H, d, J 3.2);  $\delta_{\rm C}(75.5 \text{ MHz}; {\rm CDCl}_3)$  24.17, 24.66, 25.70, 25.76, 42.63, 66.68, 69.39, 70.56, 70.74, 73.62, 96.58, 108.83, 109.56, 126.61, 145.18, 167.54 and 194.34.

(6R,8S)-6,8-Di-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-8-(thiazol-2-yl)-a-D-erythro-D-galacto-octopyranose (S,R)-6.—The method described above for the reduction of compound (S)-5, but without LiI, was applied to compound (R)-4 (100 mg, 0.26 mmol) to give, after column chromatography (silica gel; hexane-diethyl ether 7:3) pure title compound (S,R)-6 (0.132 g, 90%, ds > 95%) as an oil (Found: C, 65.3; H, 6.4; N, 2.3. C<sub>31</sub>H<sub>37</sub>NO<sub>7</sub>S requires C, 65.5; H, 6.7; N, 2.6%);  $[\alpha]_{\rm D} - 63.6 (c \, 0.81, {\rm CHCl}_3); \delta_{\rm H}(300 \, {\rm MHz}; {\rm CDCl}_3) \, 1.28 \, (3 \, {\rm H}, {\rm s}),$ 1.32 (3 H, s), 1.40 (3 H, s), 1.47 (3 H, s), 2.28 (1 H, dt, J 6.7 and 14.4), 2.40 (1 H, ddd, J 4.4, 7.2 and 14.4), 3.70-3.83 (2 H, m), 4.24 (1 H, dd, J 2.3 and 5.0), 4.41 (1 H, dd, J 1.8 and 8.0), 4.50-4.70 (5 H, m), 5.09 (1 H, t, J 7.0), 5.47 (1 H, d, J 5.0), 7.20-7.38 (11 H, m) and 7.74 (1 H, d, J 3.0); δ<sub>C</sub>(75.5 MHz; CDCl<sub>3</sub>) 24.12, 24.62, 25.69, 25.72, 40.28, 66.80, 70.02, 70.52, 70.81, 71.56, 72.79, 74.15, 76.75, 96.54, 108.66, 109.02, 119.48, 127.71, 127.87, 128.32, 128.46, 128.64, 128.83, 138.32, 139.07, 142.63 and 174.43.

# (6R,8R)-6,8-Di-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropyl-

idene-8-(thiazol-2-yl)- $\beta$ -L-threo-D-galacto-octopyranose (R,R)-6.--To a solution of tetramethylammonium triacetoxyborohydride (1.7 g, 6.4 mmol) in acetonitrile (4 cm<sup>3</sup>) was added anhydrous acetic acid (4 cm<sup>3</sup>). The mixture was stirred at room temperature for 30 min, then cooled to -40 °C and a solution of compound (R)-4 (0.35 g, 0.91 mmol) was added. The reaction mixture was stirred at -40 °C for 24 h, then aq. 1 mol dm<sup>-3</sup> sodium potassium tartrate (5 cm<sup>3</sup>) was added. The reaction mixture was allowed to warm to room temperature and partitioned between ethyl acetate and saturated aq. sodium hydrogen carbonate. The organic layer was dried over sodium sulfate and evaporated under reduced pressure to give the crude diol (0.33 g, 94%) which, according to <sup>1</sup>H NMR spectroscopy, was at least 95% diastereomerically pure. Benzylation as described above afforded, after column chromatography (silica gel; hexane-diethyl ether 7:3) pure bis ether (R,R)-6 (0.41 g, 96%, ds > 95%), m.p. 118-120 °C (Found: C, 65.3; H, 6.6; N, 2.3%)  $[\alpha]_{D}$  + 0.58 (c 1.55, CHCl<sub>3</sub>);  $[\alpha]_{D}$  + 6.35 (c 1.15, MeOH);  $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3) 1.24 (3 \text{ H}, \text{ s}), 1.32 (3 \text{ H}, \text{ s}), 1.41 (3 \text{ H}, \text{ s}),$ 1.45 (3 H, s), 1.90 (1 H, ddd, J 2.9, 10.1 and 14.6), 2.44 (1 H, ddd, J 2.5, 10.6 and 14.6), 3.58 (1 H, dd, J 1.5 and 9.1), 4.0 (1 H, ddd, J 2.5, 9.1 and 10.1), 4.22 (1 H, dd, J 1.8 and 4.5), 4.26-4.35 (2 H, m), 4.38 (1 H, dd, J 1.5 and 7.2), 4.51-4.65 (3 H, m), 5.06 (1 H, dd, J 2.9 and 10.6), 5.49 (1 H, d, J 5.1), 7.18-7.36 (11 H, m) and 7.69 (1 H, d, J 3.2); δ<sub>C</sub>(75.5 MHz; CDCl<sub>3</sub>) 24.14, 24.61, 25.77, 25.81, 42.15, 68.88, 69.90, 70.53, 70.85, 71.20, 73.57, 73.86, 75.95, 96.62, 108.57, 109.16, 119.54, 127.78, 127.98, 128.11, 128.38, 128.60, 128.79, 138.19, 139.18, 142.61 and 174.89.

6,8-Di-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-B-Lthreo-D-galacto-nonodialdo-1,5-pyranose (R,R)-7.—The method described above for the conversion of compound (R, -S)-6 into the nonodialdose (R, S)-7 was applied to compound (R,R)-6 (170 mg, 0.3 mmol) to give, after column chromatography (silica gel; hexane-diethyl ether 2:3), the aldehyde (R,R)-7 (110 mg, 72%) as an oil (Found: C, 68.3; H, 6.9.  $C_{29}H_{36}O_8$  requires C, 68.2; H, 7.1%);  $[\alpha]_D = -0.4$  (c 1.02, CHCl<sub>3</sub>); δ<sub>H</sub>(300 MHz; CDCl<sub>3</sub>) 1.28 (3 H, s), 1.33 (3 H, s), 1.45 (3 H, s), 1.47 (3 H, s), 1.81 (1 H, ddd, J 4.0, 9.3 and 14.7), 2.22 (1 H, ddd, J 2.2, 9.4 and 14.7), 3.66 (1 H, dd, J 1.6 and 8.8), 3.88 (1 H, dt, J 2.9 and 8.8), 4.01 (1 H, ddd, J 2.2, 4.0 and 9.5), 4.26 (1 H, dd, J 2.2 and 5.0), 4.40 (1 H, m), 4.35 (1 H, d, J 11.6), 4.41 (1 H, d, J11.8), 4.59 (1 H, m), 4.61 (1 H, d, J11.8), 4.64 (1 H, d, J 11.6), 5.50 (1 H, d, J 5.0), 7.20-7.40 (10 H, m) and 9.61  $(1 \text{ H}, d, J 2.2); \delta_{C}(75.5 \text{ MHz}; \text{CDCl}_{3}) 24.06, 24.56, 25.73, 25.80,$ 33.01, 69.57, 70.48, 70.79, 71.10, 72.14, 73.22, 73.75, 80.73, 96.56, 108.60, 109.19, 127.88, 127.93, 128.27, 128.38, 128.63, 128.70, 137.84, 138.77 and 203.54.

Reduction of Compound (R)-5.—The reduction of compound (R)-5 (0.12 g) as described above for diastereoisomer (S)-5 afforded a 55:45 mixture (<sup>1</sup>H NMR) of diastereoisomeric alcohols (0.12 g). Benzylation as described above gave a 56:44 mixture of dibenzyl derivatives whose <sup>1</sup>H NMR spectrum was superposable on those bis ethers (S,R)-6 and (R,R)-6.

X-Ray Crystallography.—The relevant data for the crystalstructure analyses are summarized in Table 2. The lattice parameters were determined using Cu-K $\alpha_1$  radiation ( $\lambda =$ 1.540 562 0 Å) and refined by a least-squares procedure<sup>21</sup> using the Nelson and Riley<sup>22</sup> extrapolation function. The integrated intensities were measured on a Siemens-AED diffractometer with Cu-K $\alpha$  mean radiation, using the  $\theta$ -2 $\theta$  scan mode and a modified version<sup>23</sup> of the Lehmann and Larsen<sup>24</sup> peak-profile analysis procedure. All reflections were corrected for Lorentz and polarization effects; no correction for absorption was considered.

The structure of compound (S)-5 was solved by the direct methods of SHELXS-86,<sup>25</sup> while attempts to solve the structure of compound (R,R)-6 by means of the commonly used directmethod programs failed. This structure was solved by using the new version of program SIR (SIR92)<sup>26</sup> which succeeded in giving a partially refined structure (R = 0.11) excepting the  $C(26) \cdots C(31)$  phenyl ring which, afterwards, turned out to be highly disordered.

Both structures were refined by full-matrix least-squares on F using SHELX-76,<sup>27</sup> and on  $F^2$  using SHELXL-92<sup>28</sup> programs. The two types of refinement gave final results not significantly different so all the data of Table 2 and the structural parameters of Table 1 as well as those discussed in the text are from the  $F^2$  refinements. The hydrogen atoms were located in calculated positions riding on the attached carbon atoms, and the disordered phenyl of compound (R, R)-6 was treated as a rigid body with calculated geometry and high isotropic displacement parameters. This disorder, giving intensity data of poor quality, is responsible for the difficulties encountered in solving the structure of compound (R, R)-6 and the relatively low accuracy of the results obtained from its refinement. No attempt was made to define the disorder, this probably being a rotational one about the C(25)–C(26) bond.

The absolute configurations were assigned on the basis of Flack's<sup>29</sup> index and on the known chirality of the galactose ring.

All calculations were carried out on the ENCORE-91 and POWERNODE-6040 computers of the 'Centro di Studio per la Strutturistica Diffrattometrica del C.N.R. (Parma)'. In addition to the above programs, PARST<sup>30</sup> was used for the calculations concerning the geometrical aspects of the crystal structures.

Atomic scattering factors and anomalous-scattering coefficients were taken from the International Tables for X-Ray Crystallography.<sup>31</sup> The final atomic coordinates, fractional coordinates for all atoms, bond lengths, bond angles, and torsional angles have been deposited at the Cambridge Crystallographic Data Centre.\*

## Acknowledgements

We thank the Progetto Finalizzato Chimica Fine e Secondaria, n. 2 (CNR, Rome) for financial support, the Ministerio de Educacion y Ciencia (Spain) for a postodoctoral fellowship to P. M., and the EEC (Bruxelles) for a Tempus grant to L. K. We are also indebted to Professor C. Giacovazzo (University of Bari) who solved the structure of compound (R,R)-6 and to Professor G. M. Sheldrick (University of Göttingen) who made available his SHELXL-92 program at the beta-test stage.

\* See 'Instructions for Authors', J. Chem. Soc., Perkins Trans. 1, 1994, issue 1.

## References

- A. Dondoni, Carbohydrate Synthesis via Thiazoles, in Modern Synthetic Methods, ed. R. Scheffold, Verlag Helvetica Chimica Acta, Basel, 1992, p. 377; Bull. Soc. Chim. Belg., 1992, 101, 433.
- 2 A. Dondoni and P. Merino, J. Org. Chem., 1991, 56, 5294;
   A. Dondoni, P. Merino and J. Orduna, Tetrahedron Lett., 1991, 32, 3247.
- 3 A. Dondoni, A. Marra and P. Merino, J. Am. Chem. Soc., 1994, 116, in the press.
- 4 A. M. Šepulchre, A. Gateau-Olesker, G. Lukacs, G. Vass, S. D. Gero and W. Voelter, *Tetrahedron Lett.*, 1972, 3945; P. Coutrot, C. Grison, M. Tabyaoui, S. Czernecki and J.-M. Valéry, *J. Chem. Soc.*, *Chem. Commun.*, 1988, 1515; S. Czernecki and J.-M. Valéry, *J. Carbohydr. Chem.*, 1988, 7, 151; A. Dondoni, G. Fantin, M. Fogagnolo and P. Merino, *J. Carbohydr. Chem.*, 1990, 9, 735; Ph. Maillard, C. Huel and M. Momenteau, *Tetrahedron Lett.*, 1992, 33, 8081.
- 5 S. J. Danishefsky and M. P. DeNinno, Angew. Chem., Int. Ed. Engl., 1987, 26, 15; J. S. Brimacombe, in Studies in Natural Product Chemistry, ed. A.-ur Rahman, Elsevier, Amsterdam, 1989, vol. 4, part C, p. 157.
- 6 For the convenient use of % diastereoselectivity (ds) instead of % diastereoisomeric excess (de), see: S. Thaisrivongs and D. Seebach, J. Am. Chem. Soc., 1983, 105, 7407.
- 7 B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863.
- 8 For reviews on the so-called Cram's Rule see: E. L. Eliel, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1983, vol. 2, part A, p. 125; J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn and H.-U. Reissig. Organic Synthesis Highlights, VCH Verlagsgesellschaft, Weinheim, 1991, p. 3.
- 9 S. J. Danishefsky, W. H. Pearson, D. F. Harvey, C. J. Maring and J. P. Springer, J. Am. Chem. Soc., 1985, 107, 1256; S. J. Danishefsky, M. P. DeNinno, G. B. Philips, R. E. Zelle and P. A. Lartey, Tetrahedron, 1986, 42, 2809; A. Dondoni, G. Fantin, M. Fogagnolo and A. Medici, Tetrahedron, 1987, 43, 3533; A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici and P. Pedrini, J. Org. Chem., 1989, 54, 693.
- 10 S. J. Danishefsky, C. J. Maring, M. R. Barbachyn and B. E. Segmuller, J. Org. Chem., 1984, 49, 4564.
- 11 A. Dondoni, A. Boscarato and A. Marra, Synlett, 1993, 256.
- 12 For recent articles with leading references on the reduction of β-hydroxy ketones to either syn or anti 1,3-diols see: D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. Soc., 1988, 110, 3560; D. A. Evans and A. H. Hoveyda, J. Org. Chem., 1990, 55, 5190; D. A. Evans, J. A. Gauchet-Prunet, E. M. Carreira and A. B. Charette, J. Org. Chem., 1991, 56, 741.
- 13 For a review of the uses of acyloxyborohydrides in synthesis see: G. W. Gribble and C. F. Nutaitis, Org. Prep. Proced. Int., 1985, 17, 317.
- 14 S. Kiyooka, H. Kuroda and Y. Shimasaki, *Tetrahedron Lett.*, 1986, 27, 3009.

- 15 A. Dondoni and P. Merino, Synthesis, 1993, 903.
- 16 Y. Mori, M. Kuhara, A. Takeuchi and M. Suzuki, Tetrahedron Lett., 1988, 29, 5419.
- For an improved procedure see: A. Dondoni, A. Marra and D. Perrone, J. Org. Chem., 1993, 58, 275.
   C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National
- Laboratory, Tennessee, 1965.
- 19 D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354.
- 20 R. F. Butterworth and S. Hanessian, Synthesis, 1971, 70.
- 21 M. Nardelli and A. Mangia, Ann. Chim. (Rome), 1984, 74, 163. 22 J. B. Nelson and D. P. Riley, Proc. Phys. Soc. London, 1945, 57, 160, 477.
- 23 D. Belletti, F. Ugozzoli, A. Cantoni and G. Pasquinelli, Internal Report, March 1, 1979, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Parma, Italy, 1979.
- 24 M. S. Lehmann and F. K. Larsen, Acta Crystallogr., Sect. A, 1974, 30, 580.

- 25 G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, University of Göttingen, Germany, 1986.
- 26 G. Giacovazzo, private communication.
- 27 G. M. Sheldrick SHELXL-76, Program for Crystal Structure Determination, University of Göttingen, Germany, 1976.
   28 G. M. Sheldrick, SHELXS-92, Program for Crystal Structure
- Refinement, University of Cambridge, England, 1992.
- 29 H. D. Flack, Acta Crystallogr., Sect. A, 1983, **39**, 876. 30 M. Nardelli, Comput. Chem., 1983, **7**, 95.
- 31 International Tables for X-ray Crystallography, Kynoch Press (Present Distributor Kluver Academic Publishers, Dordrecht), 1974, vol. 4, pp. 99 and 149.

Paper 3/06154J Received 14th October 1993 Accepted 23rd December 1993